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Abstract

A numerical method for simulating the frequency-dependent impedance response of multi-phase composite
materials has been developed. The algorithm takes as input 1) a digital image of a microstructure, in two or three
dimensions, of any specified composite material, and 2) the frequency-dependent electrical properties of the
individual phases of the composite. Art impedance spectrum of any frequeney range can then be computed using a
conjugate gradient algorithm operating on a finite difference solution scheme of Laplace’s equation. Examples are
given of the impedance of analytically solvable microstructure, to validate the algorithm, and of a random system, to
test the usefulness of two different effective medium theories.

1. Introduction

Impedance spectroscopy (IS) is a useful, non-
destructive tool for analyzing many properties of
electroceramic materials [1]. In this technique, a
small, single-frequency AC field is applied to a
sample, and the amplitude and phase of the
resulting current measured. The amplitude of the
AC signal is chosen to be small enough to assume
a linear response of the material. Usually the
impedance, the ratio of the applied voltage to the
resulting current, is computed and analyzed.

Recently, IS has been applied to analyze the
microstructure of cement paste via its impedance
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response [2-6]. Most experimental techniques for
analyzing pore structure, like scanning electron
microscopy or mercury intrusion porosimetry [7],
require drying and/or high vacuum. Because the
properties and microstructure of cement paste
are sensitive to the current moisture state and
history of the material, these kind of microstruc-
tural analyses are often difficult to interpret, since
removal of moisture can significantly change the
microstructure. The development of a non-de-
structive, in situ microstructural analysis tech-
nique like IS, therefore, is proving to be useful
for studies of the development of microstructure
in hydrating cement pastes.

Interpreting the results of IS experiments to
give information on microstructure, especially for

complex materials like cement-based materials,
requires some kind of theoretical model. Most
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experimental results are interpreted in terms of
series or parallel combinations of resistors and
capacitors and special elements like the “con-
stant phase element” (CPE) [1]. The choice of
parameters in these models are not always unique,
resulting in some degree of inherent ambiguity.
Also, it is often incorrect to describe the complex
topology of real microstructure by using simple
series and parallel ideas. This has been the rea-
son for using more complicated elements like the
CPE element. These elements, however, whiIe
they can give reasonable fits to IS data, are not
easily related to microstructural features.

The approach taken in this work has been to
first represent microstructure via digital image-
based models [8–9] or actual 2D micrographs.
X-ray tomography can also be used to give exper-
imentally-determined 3D microstructure [10].
Therefore the starting point is an actual or simu-
lated microstructure that is numerically stored
and thus can be numerically analyzed. Various
physical properties of these 2D or 3D microstruc-
tural images can then be computed using exact
finite-difference or finite element algorithms.
“Exact” means that the correct properties are
computed for the given microstructure and choice
of individual phase properties, within the limit of
the finite resolution of microstructural features in
the digital image. In this way the arrangement of
phases within the microstructure can be corre-
lated directly with observed bulk properties. An
overall review of this modeling approach for ce-
ment-based materials has been presented by Gar-
boczi and Bentz [11,12] The approach is readily
generalized to other materials [13].

The computational scheme described in this
paper is a continuation of previous work on the
simulation of IS experiments [14]. The previous
work used the Y– V algorithm [15], which is lim-
ited to two dimensions but is very efficient. This
algorithm directly computes the admittance of a
heterogeneous microstructure, without actually
solving Laplace’s equation for the system. In most
cases, however, microstructure must be repre-
sented in three dimensions to accurately repre-
sent complicated geometries and especially per-
colation phenomena. The ideas behind the Y–V
algorithm [14] have been generalized and ex-

tended to develop the three dimensional Fogel-
holm algorithm [16]. The .Fogelholm algorithm
becomes extremely slow for systems where the
highly conducting phase is far from a percolation
threshold [16,17]. Since most materials of interest
are not necessarily near to such a percolation
threshold, we have developed a new algorithm,
based on a different approach.

This new algorithm uses a finite difference
approach and a conjugate gradient algorithm to
solve the AC electrical equations. This algorithm
is the complex analog of a previous algorithm
that solved DC composite electrical problems [8],
and may be applied to either two- or three-di-
mensional images. The method vectorizes well,
and so runs very efficiently on modern vector
supercomputers. This algorithm allows IS experi-
ments to be simulated on arbitrary three dimen-
sional systems.

2. Simulation of impedance spectra

Two basic assumptions implicit in the present
algorithm are: 1) the microstructure of interest
can be accurately represented as a 2D or 3D
digital image, where each pixel of the image is
treated as a homogeneous single phase, and 2)
the impedance of each individual phase in the
composite is known at arbitrary frequencies, ei-
ther experimentally as a list of numbers, or by
using a fitted circuit model to represent the single
phase properties. In this paper, we show exam-
ples of use of the algorithm on models where a
simple RC circuit, consisting of a perfect resistor
and perfect capacitor placed in parallel, is used
to represent single-phase properties. Because of
the random geometry in composite materials,
complicated composite IS behavior is commonly
encountered, even when the single phase proper-
ties are given by simple RC circuits.

Fig. 1 shows a portion of a two dimensional
image, in which electrodes are simulated by plac-
ing an extra layer of pixels on opposite sides of
the image. The resistances (R) and capacitances
(C) for each phase ‘are uniquely determined by
that phase’s ICSIStlVity and diGICGtrlG constant,

respectively. Different electrical properties may
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Fig. 1. Part of a 2D image showing how the resistor–capacitor

network is mapped onto the digital image of the microstruc-

ture.

be assigned to the sample-electrode interface, if
necessary, to simulate electrode effects.

The R and C values used in the circuits for
each pixel are:

R=(uA/D)-l, (1)

C=krcOA/D, (2)

where m is the conductivity of the specified phase,
k,= ●/eO is the dielectric constant, ●o is the
permittivity of free space, D is the length be-
tween the center of the pixel and the edge of the
pixel (1/2 unit), and A is the area of the pixel
face (1 unit2). It is possible to assign a scale to
the digital images, e.g. pixel length = 1 mm, but
for the purpose of this description each pixel has
a length of one unit.

The admittance +, which is the reciprocal of
impedance, is the AC analog of conductance. For
each RC circuit at each applied frequency, the
admittance is then given by:

$=l/Rj+i~cj, (3)

where the subscript (j) refers to the jth phase of
the microstructure, R and C are as defined above,
~ is the applied angular frequency, and z = ~.
The sample size is much smaller than the wave-
length associated with the applied frequency, so
that the same value of w is used at each pixel.
Each pixel has four (2D) or six (3D) impedances
extending from its center to the pixel boundaries
(see Fig. 1). Neighboring pixels are connected

together by joining the appropriate impedances
into a single bond. Perfect bonds are usually
assumed between different phases. However, spe-
cial internal-interface elements could be easily
inserted if necessary.

The end result is the creation of a two or three
dimensional electrical network with a node at the
center of each pixel. The solution of Kirchoff’s
law on this impedance network is mathematically
equivalent to a finite-difference solution of
Laplace’s equation, V “j= V2V = O, where j =
@E, E = – VV, and + is the admittance [18]. This
equation comes from the static (time-indepen-
dent) limit of the continuity equation [19]. The
well-known “correspondence principle” relating
static (~ = O)elastic problems to single-frequency
viscoelastic problems [20] has its analogy for elec-
trical problems as well, which we have exploited
in developing this algorithm. The mathematics is
the same for the single-frequency complex case as
for the DC case, but all quantities are allowed to
be complex and therefore dependent on fre-
quency.

The impedance calculation begins by applying
a voltage across the microstructure, i.e. the field
of pixels. This is accomplished, using a unit volt-
age step, by setting the voltage of the electrode
pixel nodes on one side of the image to 1, and
those on the opposing side of the image to O.
Since the applied voltage step is taken to have a
zero phase angle, the voltage at the electrodes is
real and is not a function of frequency. However,
the voltages at the pixel-nodes within the sample
will be complex, in general, and are iterated until
the net current at each node is zero, satisfying
Kirchoff’s law [19]. Knowing the voltage at each
pixel, it is possible to calculate all the local cur-
rents, as well as the total current across the
sample, and hence, the composite impedance. A
similar technique was employed [8] for DC stud-
ies of a three-dimensional cement paste model.
Since the nodes in this model are connected by
impedances instead of only resistors, the network
now has a frequency-dependent response.

Periodic boundaries are maintained in direc-
tions perpendicular to the applied field by con-
necting pixels located on a surface of the image
to the pixels on the opposite surface. This re-
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duces statistical errors associated with using fi-
nite-size digital images. If sample-electrode phe-
nomena are not of interest, then periodicity can
also be used in the field direction, while still
maintaining the applied field [8]. Otherwise, spe-
cial interface resistors and capacitors can be in-
serted between the electrode and the sample
pixels to mimic the sample-electrode interracial
response,

Solving Kirchoffs law at each of N nodes
leads to an independent set of N linear equa-
tions that can be arranged into a matrix of the
type Ax = b, where A,j is the admittance between
nodes z and j, x is the voltage vector of length N,
and b is a constant vector, also of length N, that
comes from the constraints in the system. The
constraints in this system are periodic boundary
conditions perpendicular to the applied field, and
the constant electrode voltages. A matrix equa-
tion of this type for the nodal voltages lends itself
well to a conjugate gradient iteration technique
[21]. The iteration process stops when the magni-
tude of the maximum residual current going in to
a node, averaged over all nodes, is below a pre-
scribed cutoff, chosen low enough to ensure an
accurate solution, but not so low that computer
time is wasted on achieving more than the neces-
sary accuracy. Since there is one equation and
one unknown voltage for each node, a three-di-
mensional, 1003 image, for example, will contain
one million equations and unknowns. In general,
the matrix A has elements connecting each node
to every other node. Fortunately, in a 3D system,
only 7 of the A coefficients for each node are
non-zero. These 7 elements come from the six
connections from each node to its nearest neigh-
bors to a central site, plus a self term.

Memory and computational speed are the lim-
iting constraints on the size of models that can be
used. The memory requirements are on the order
of 100 bytes per pixel, when all real numbers are
double precision (eight bytes per real number).
For each applied frequency, a typical 1003 system
is solved in approximately 1600 seconds on a
Cray-YMP supercomputer. Usually, a single spec-
trum requires at least 20 different frequencies to
be sampled. Other versions of the conjugate gra-
dient algorithm may give better performance [22].

3. Model verification: exactly solvable test cases

In order to verify the model for random
multi-phase composite microstructure, it is nec-
essary to show that the simulation scheme de-
scribed above is correct by computing the
impedance of simpler microstructure for which
analytical solutions exist. Four analytically solv-
able models will be studied numerically.

The first example is the simplest: a single
phase material that has a DC conductivity u =
0.05 S/unit (mho/unit) and a relative dielectric
constant k, = 1000. Fig. 2 shows the Nyquist plot
[1] of this system, where the negative of the
imaginary part of the impedance is plotted against
the real part of the impedance. The solid line is
the exact impedance, and the circles are numeri-
cal results. The DC resistance of the sample (R)
is shown to be 0.4Q. Eq. (1) may be used to
convert this resistance to conductivity, where A is
equal to 50 X 50 = 2500 units2, and D is equal to
50 units since the image used is 503 in size. The
conductivity for the system is 0.05 S/unit, as
expected. The capacitance, and hence k,, is de-
termined by R and 00, the angular frequency at
the peak of the arc in a Nyquist plot. For a
homogeneous system,

u
——

‘o – k,eO ‘
(4)

where @ is the DC conductivity of the system,
and k, and COare as defined before. Since we
can establish both u and WOfrom the impedance
curve, k, can be calctdated directly. Approxi-
mately locating the arc maximum by interpolating
between the data points displayed in Fig. 2 gives
a value of k, = 1036, an error of only 3.69Z0.This
error can be attributed to approximating the posi-
tion of the arc peak, and thus the value of OO.In
this case, since we knew UOanalytically, the value
of k, could have been computed even more accu-
rately. However, the interpolation method would
be that used in a simulation of a general mi-
crostructure, where no analytical results would be
available. Table 1 shows the absolute magnitude
of impedance, I z 1, for several different frequen-
cies, showing the accuracy available when the
frequency is precisely known. The relative errors
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Fig. 2. Nyquist plot for a single phase material, whose admit-
tance is given at all frequencies by @= u + ik,a, u = 0.05

S/unit, k,= 1000.

shown in column 5 are due to computer round off
only.

The next two cases considered are two phase
composites, with each phase occupying half the
volume, arranged in series or parallel, as shown
in Fig. 3. The DC composite conductivity for each
of these cases is [23]:

(Series) u= (cl/crl + c2/m2)”, (5)

(Parallel) a= clul + c,cr,, (6)

AIPplicdVOltdgc
w

Applmi VoluIge

mm
Series

L—

Parallel
Fig. 3. 2D cross sections of a series and parallel arrangement

of the phases in a twophase composite.

where u is the conductivity of the composite

microstructure, and ml, c1, U2, and C2 are the DC
conductivity and volume fraction of phases 1 and
2, respectively. The same equations apply if the
admittance I/J is substituted for conductivity.

The calculated impedance curve for the series

microstructure is shown in Fig. 4 along with val-
ues determined from a .503 image. Fig. 5 shows a

similar plot for the parallel arrangement. In each

case, the model has accurately determined the
impedance curve. Numerical comparisons of IZ /
at different frequencies for both the series and
parallel case are also shown in Table 1.

The last example is somewhat more compli-
cated and consists of a dilute distribution of insu-

Table 1

Comparison of computational and analytical results for the absolute value of the impedance of the single phase, series, parallel,

and dilute sphere suspension examples. The applied frequency is ~, and ]Z I = [(Re Z)2 + )Im Z)2]1/2 is the absolute value of the

impedance.

System f Izl Izl TOerror

model theory

single O Hz 0.40000 0,40000 0
phase

500 KHz 0.28129 0.28270 0.279
60 MHz 0.08726 0.08772 0.529

series O Hz 0.30000 0.30000 0

90 KHz 0.22324 0.22375 0.228
200 MHz 0.06733 0.06754 0.311

parallel O Hz 0.26667 0.26667 0

900 KHz 0.26206 0.26211 0.019

4 MHz ().01179 0.01185 0.506

sphere o Hz 0.10115 0.10115 0
6.07 MHz 0.09688 0.09678 0.103

1.76 GHz 0.06792 0.06768 0.351
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Fig. 4. Nyquist plot for the series-microstructure composite

material, where the admittances of the two phases is as shown

in the figure.

lating spheres in a conducting cube. “Dilute”
means that the volume fraction of the spheres is
small enough so that each sphere does not inter-
act with the other spheres. In this case, the DC
conductivity of the composite is [24]:

(7)U=U1+SC2(U2—01)/(Z~I+~2),

where the terms have the same meanings as be-
fore, and the insulating sphere is phase 2. This

equation may aIso be converted to admittance to
provide an analytical solution for the impedance
spectra. The electrical parameters for the exam-

o 0.1 0.2 0.3 0.4 0.5
z

Fig, 5, Nyqulst plot for the parallel-microstructure composite

material, where the admittances of the two phases is as shown
in the figure.

I a,=o. iskl k=l
0.1 02 = 0,135S/U k = 1~

1

o 0.02 0.04 O.(M 0.0s 0.1 0.12

z’
Fig. 6. Nyquist plot for dilute suspension of spheres mi-

crostructure, where the admittances of the two phases are

given in the figure. Phase 1 is the matrix, phase 2 is the

spherical inclusions.

ple considered are ml= 0.1, U2= 0.05, Icl = 1,
kz = 1000. Both the analytical solution and model
results are shown in Fig. 6, and are in good
agreement. The sphere is simulated by a digital
representation that has a diameter of 33 pixels,
and is placed in the center of a 1003 cube, having
periodic boundary conditions. The sphere has a
volume fraction of 0.018. A single sphere can be
simulated to give the correct result for a dilute
concentration of spheres, since Eq. (7) is based
on the assumption of non-interacting spheres. It
is known that the admittance of a periodic array
of spheres, which result from the periodic bound-
ary conditions used, is the same as Eq. (7) up to
the linear order term in the sphere volume frac-
tion [25]. Some error is also incurred because the
insulating sphere in the model is only a digital
representation of a true continuum sphere. Nev-
ertheless, the model has accurately described the
complex electrical behavior for this system, as can
be seen in Table 1 and Fig. 6.

It is interesting to note that Fig. 6 clearly
displays two arcs. In fact, it has been shown that
the analytical solution in Eq. (7) can be mapped
exactly onto two RC parallel circuits arranged in
series [26]. Two-arc behavior like this is often
taken to mean that” a series arrangement of the
phases exists (see Fig. 4), since a parallel arrange-
ment of phases will only show one arc (see Fig.
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5). However, it is physically not possible to con-
sider the dilute sphere suspension microstructure
as either a parallel or a series arrangement of
phases. Rather, since the ‘current must flow
around and through the spheres, there is a de-
gree of tortuosity present, which gives a more
complicated response. This behavior will be pre-
sent for any choice of the individual phase admit-
tance parameters, although two arcs will only be
visually observed when there is a significant dif-
ference between the two resonant frequencies,
q = crl/k 1 and 02 = o_2/k2. In Bonanos’ exact
mapping to two RC parallel circuits in series [26],
the resistors and capacitors defined by Eq. (7)
contain terms relating to the individual phase
admittances and phase fractions of both phases,
so the two “phases” that appear to be in series
are actually some mathematical combination of
the two actual phases.

Fricke [27] computed the admittance of a di-
lute suspension of triaxial (a + b #c) ellipsoids,
randomly oriented, where matrix and inclusions
had arbitrary admittances. He found that for this
low concentration limit, the impedance could be
expressed as a series combination of four RC
circuits. The number four comes from the matrix
phase plus one each for the three possible orien-
tations of the ellipsoidal inclusions. These four
circuits collapse to three for ellipsoids of revolu-
tion (b = c), and to two for spheres (a = b = c).
Therefore inclusion geometry also contributes to
determining how many arcs will appear in the
impedance spectrum, and not just a material’s
series/parallel character, which usually cannot be
defined for a complex microstructure.

One could speculate that two (or more) arc
behavior will only be observed if at least one of
the phases is discontinuous, as was the case in the
above dilute suspensions of inclusions. The next
section gives an example of how this hypothesis is
not true, in general.

4. Two-Phase interpenetrating random network

The final system to be considered is a two
phase, interpenetrating composite [28,29] in which
both phases are percolated in three dimensions.

}

(31= 1 s/” k=l
1.2 G* =0,5 S/” k = 10,030

i

o 0.2 0.4 0.6 0.8 1 1.2 1.4

z’
Fig. 7. Nyquist plot for interpenetrating phase composite

model of overlapping spheres. Phase 1 is the matrix, phase 2
is the phase made up from the overlapping spheres. The

volume fraction of phase 2 is 0.34.

The phases have the following properties: al =
1.0, U2= 0.5, kl = 1, k2 = 10000. Phase 2 is
formed by placing overlapping spheres at random
locations in the digital microstructure. Periodic
boundary conditions were maintained during the
sphere placement process. Each sphere had a
diameter of 9 pixels, and was placed in a 643 unit
cell, giving volume fractions c1 = 0.66 and C2=
0.34.

The Nyquist plot of the impedance curve of
this system is shown in Fig. 7. The data points
clearly show that there is more than one arc
present, and most probably many arcs, with a
distribution of resonant frequencies. However,
using a burning algorithm on the digital image
[30,31] model, both phases were found to be fully
percolated and continuous. The dashed line in
Fig. 7 is the Maxwell-Wagner IEq. [1], an effec-
tive medium theory equation based on spherical
inclusions:

*=+1 = [2@l + *2 - z~,(+, - @J]

[201 +V2+X2(4, -02)] ‘
(8)

where X2 is the volume fraction of phase 2, the
phase fraction of phase 1 is 1 – Xz, and @l and IJz
are the admittances of uhases 1 and 2. res~ec-. .
tively. The Maxwell-Wagner equation has been
shown, like Eq. (7), to be analytically equivalent
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to a series combination of two RC (resistor in
parallel with a capacitor) circuits [26], which will
always show two arc behavior if there is a signifi-
cant difference in relaxation times between the
two arcs. The solid line in Fig. 7 clearly shows
two weI1-separated arcs, which does not agree
well with the numerical data points. However, the
DC resistivity does matches the numerical result
within a few percent.

The Maxwell-Wagner equation does not work
well for the overall impedance curve in this case
because it cannot take into account the overlap-
ping of the spheres which eventually leads to the
percolation of the sphere phase. Eq. (8) does not
have a percolation threshold. This is easily proven
by letting +2 go to q which does not produce an
infinite value of $ for any value of Xz <1. How-
ever, letting *I go to zero results in ~ being zero
for any value of X2. This result means that in the
Maxwell-Wagner “microstructure” implied by
the equation’s derivation, phase 1 is always perco-
lated and phase 2 is never percolated.

The dashed line in Fig. 7 is a variation of Eq.
(8), often referred to as the “self-consistent” ap-
proach [32]. This theoretical value for the
impedance matches the overall curve much more
closely than did the Maxwell-Wagner equation.
It is obtained by modifying the derivation of Eq.
(8) by letting the embedding medium in the
derivation be the effective medium, rather than
the pure matrix phase [32]. This treats phases 1
and 2 on an equal basis, thereby eliminating the
distinction between “matrix” and “inclusion”.
The resulting prediction for the effective conduc-
tivity is:

[
$=+ –(3X2-2)@I –(1–h2)Ij2

(+ [(3-Y2-2)*1 +(1 –3,)*,]2

+8+,42)’’2], (9)

where the parameters are the same as in Eq. (8),
and the square root is the complex square root.
Eq. (9) is the solution to the quadratic equation
that results from making Eq. (8) self-consistent.
Eq. (9) does display a percolation threshold. In
the limit where *Z approaches zero, Eq. (9) gives

a critical value of Xz of 1/3. The actual critical
value of X2 for overlapping spheres to percolate
is X2= 0.29 [33]. This is why Eq. (9) matches the
overall shape of the impedance curve better than
did Eq. (8). Although we have not checked this
explicitly, it is almost certain that Eq. (9) is not
expressible as a finite number of RC circuits, but
rather produces a continuous spectrum of reso-
nant frequencies. The overlapping sphere mi-
crostructure, like many real random microstruc-
ture, has many differently-shaped microstruc-
tural features, and thus shows a broadened, non-
circular Nyquist impedance plot.

5. Discussion and conclusions

A computer algorithm has been developed that
can accurately compute the impedance spectrum
of a simulated microstructure in two or three
dimensions. Model inputs include: 1) a digital
representation of microstructure and 2) the elec-
trical properties of each individual phase of the
microstructure. The individual phase electrical
properties can be read from a table of experimen-
tally known vaIues or can be simulated using a
fitted circuit.

The calculation scheme has been shown to be
very accurate for composite systems with known
solutions, which provides a basis for extending
the model to more complicated multi-phase com-
posites whose solution are not known analytically.

The overlapping sphere, interpenetrating phase
composite model demonstrated how non-circular,
multiple arc behavior can appear even when both
phases of a random two-phase composite are
fully percolated. Thus what is usually referred to
as “series-like behavior” can result even when it
is not possible to characterize the microstructure
as being a series combination of phases in any
way. Also, the dangers in inferring microstructure
from DC characteristics alone were clearly seen
in Fig. 7, which showed that both the Maxwell–
Wagner and self-consistent effective medium the-
ories gave accurate (within a few percent) predic-
tions of the DC reiistivity. The percolation as-
pects of the microstructure implied by these two
equations are much different, however. The addi-
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tional use of finite frequency data showed that
the self-consistent theory gave a reasonably good
prediction for the overall character of the
impedance curve, while the Maxwell-Wagner

equation badly misrepresented the shape of the

impedance curve.

While this approach has been developed to

study the impedance response of cement-based
materials, it is generally applicable to any hetero-
geneous material whose microstructure can be
represented by a two- or three-dimensional digi-
tal image, if the electrical properties of the indi-
vidual phases of the microstructure are known.

Perfect bonding between phases is usually as-
sumed, although interface impedances can be
readily handled by the algorithm. A direct digital
image representation of microstructure that can
be compared with accurate numerical impedances
allows quantitative microstructure-property rela-
tionships to be developed.

The ability to directly compute the impedance
curve of any microstructure allows better mi-
crostructural inferences from experimental IS
curves, removing dependence on overly simple
resistor-capacitor circuit models. Such circuit
models are often very useful, and even quantita-
tively accurate in some instances, but will only
hinder progress in using IS in the study of the
complex microstructure of random composite ma-
terials [34,35].

Current computing capabilities of machines
that are generally available to the average aca-
demic user limit three-dimensional models to sizes
not much larger than 1003, although that limit
will only improve as larger memory and higher
speed computers become more widely available
to the materials science community. These im-
provements in computing power will make possi-
ble the use of higher resolution digital images,
which will in turn result in more accurate numeri-
cal predictions of the complex electrical proper-
ties of materials with intricate random mi-
crostructure.
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